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Motivations
I Learning in an unknown environment means to balance

• Exploration • Exploitation
I Optimistic (OFU) methods

• Construct a set of plausible MDPs
• Execute the optimal policy of the “best” MDP in the set

I OFU may lead to over-optimism is some MDPs
◦ even fail in learning

I Regularization has proved to be effective in ML ⇒ in Exp-Exp?

Online Learning in MDPs
Markov Decision Process M = {S,A, r, p}
• S: states
• A = (As)s∈S : actions
• r(s, a): mean rewards
• p(s′|s, a): transition probabilities, Γ = max

s,a
‖p(·|s, a)‖0 ≤ S

Optimality criterion: long-term average reward
For any policy π ∈ ΠSR(M) starting from s ∈ S:

gain: gπM(s) := lim
T→+∞

E

[
1
T

T∑
t=1

r(st, at)
]

bias: hπM(s) := C- lim
T→+∞

E

[
T∑
t=1

(
r(st, at)− gπM (st)

)]

In weakly communicating MDPs, any optimal policy
π∗ ∈ arg max

π
{gπ(s)}

has constant gain, i.e., gπ
∗
(s) = g∗ for all s ∈ S.

Moreover, (g∗, h∗) = (gπ
∗
, hπ

∗
) satisfy the optimality equation

h∗ = L h∗ − g∗e, where e = (1, . . . , 1)ᵀ.
optimal Bellman operator: Lv(s) = max

a∈As

{r(s, a) + p(·|s, a)Tv}

Cumulative regret minimization ∆(A, T ) =
T∑
t=1

(
g∗ − rt(st, at)

)
Diameter and Span: [Jaksch et al. 2010; Bartlett and Tewari, 2009]

D = max
s,s′∈S

{
min

π:S→P(A)
Eπ
[
T (s′)

∣∣s] }
sp {h∗} = max

s∈S
{h∗(s)} −min

s∈S
{h∗(s)}

• sp{h∗} ≤D (always)
• D =∞ but sp{h∗} <∞

expected time s→ s′

Optimism in Face of Uncertainty
For episodes k = 1, 2, ...

1. Compute a set of plausible MDPsMk

2. Planning: Compute an optimistic policy π̃k

3. Execute policy π̃k

Confidence set:
Mk =

{
M = 〈S,A, r̃, p̃〉 : r̃(s, a) ∈ Bkr (s, a), p̃(s′|s, a) ∈ Bkp (s, a, s′)

}
Bkr , Bkp = high-probability confidence intervals around empirical estimates

|r̂(s, a)− r̃(s, a)| ≤ βsar,k, |p̂(s′|s, a)− p̃(s′|s, a)| ≤ βsas
′

p,k

Planning:
I UCRL [Jaksch et al., 2010] (M̃∗k , π̃∗k) ∈ arg max

M∈Mk,π∈ΠSD(M)
gπM

• No prior knowledge ⇒ might be over-optimistic

I Regal.C [Bartlett and Tewari, 2009] (M̃∗R, π̃∗R) = arg max
M ∈ MRC ,π∈ΠSD(M)

gπM

whereMRC := {M ∈Mk : sp {h∗M} ≤ c}

• Constrains the set of possible MDPs ⇒ intractable
• Overall problem is ill-posed

I SCAL (M̃∗c , π̃∗c ) ∈ arg max
M∈Mk, π ∈ Πc(M)

gπM

where Πc(M) :=
{
π ∈ ΠSR : sp {hπM} ≤ c ∧ sp {gπM} = 0

}
• Relaxation of Regal.C: see Prop. 1

• Overall problem is well-posed
Use prior knowledge
about sp

{
h∗
M∗

}
≤ c

Planning under bias-span constraint (SCOPT)
Optimization problem: g∗c := sup

π∈Πc(M)
{gπM}

where Πc(M) :=
{
π ∈ ΠSR : sp {hπM} ≤ C ∧ sp {gπM} = 0

}
Why π ∈ ΠSR?

the maximizer π∗c (M) may be a randomize policy
Why sp {gπM} = 0?

there may be no dominating policy π ∈ ΠSR with constant
bias span
π ∈ ΠSR is dominating ⇒ ∀π′ ∈ ΠSR,∀s ∈ S, gπ(s) ≥ gπ

′
(s)

The supremum always exists, the set Π∗c(M) of maximizers?

Lemma. If M is unichain then Π∗c(M) 6= ∅.

Value Operator: Given v ∈ RS and C ≥ 0, we define
S(C, v) =

{
s ∈ S|Lv(s) ≤ min

s
{Lv(s)}+ C

}
and

Tcv = ΓcLv =
{
Lv(s) ∀s ∈ S(C, v),
C + min

s
{Lv(s)} ∀s ∈ S \ S(C, v),

Tc is feasible at (v, s) i.i.f.
s ∈ S̃(C, v) = {min

a∈As

{r(s, a) + p(·|s, a)Tv} ≤ min
s′
{Lv(s′)}+C

⇒ ∃δ+
v Tcv(s) =

∑
a∈As

δ+
v (s, a)

[
r(s, a) + p(·|s, a)Tv

]
Greedy operator:

Gc(v) =

δ
+
v (s) s ∈ S̃(C, v),

arg min
a∈As

{
r(s, a) + p(·|s, a)Tv

}
s ∈ S\S̃(C, v).

Planning algorithm: ScOpt

relative value iteration
c-span truncation (from above)
∀n, sp {vn} ≤ c

Asm. 1. L is a γ-span contraction
∀u, v ∈ RS , sp {Lu− Lv} ≤ γsp {u− v}

Asm. 2. Tc is globally feasible:
∃δ+
v , Tcv = Lδ+

v
v (feasible at each s)

Asm. 1 + Asm. 2

ScOpt properties

• Span contraction: Tc is a γ-span contraction
• Optimality equation (OE): ∃(g+, h+) ∈ R× RS s.t. Tch+ = h+ + g+e.

• Uniqueness: if (g, h) solution of OE, then g = g+ and h = h+ + λe

• Convergence: ∀v0 ∈ RS , the sequence (vn) converges to h+

and lim
n→+∞

Tn+1
c v0 − Tnc v0 = g+e.

• Dominance: the gain g+ is an upper-bound on the supremum, i.e., g+ ≥ g∗c .

• ε-optimality: the policy returned by ScOpt is ε-optimal: ‖g+e− gπn‖∞ ≤ ε
• Convergence to g∗c : if π+ = Gc(h+) is unichain, then g+ = g∗c and π+ ∈ Π∗c

s0 s1

a0, r = 0

a1, r = 0

a0, r = 1

a1, r = 1

Tc might not always be
feasible even when Π∗c 6= ∅

s0

s1 s2

a0, r = α

a1, r = δ

a0, r = β

a0, r = 0

Tc might not always be
feasible at its fixed-point h+

s0 s1

s2

r = 1

1− δδ

r = 0

r = 0

(Tc)nv0 might not converge even
when Πc 6= ∅ and all policies are
both unichain and aperiodic

1. Initialize n = 0 and v1 = Tcv0 − (Tcv0)(s)e

2. While sp {vn+1 − vn}+ 2γn

1− γ sp {v1 − v0} > ε
(a) n += 1
(b) vn+1 = Tcvn − (Tcvn)(s)e.

3. return vn and πn = Gc(vn)

Learning under bias-span constraint (SCAL)

Equivalent planning problem:
µ̃∗ ∈ arg max

µ∈Πc(M̃k)

{
gµ
M̃k

}
M̃k is an extended MDP
⇒ A is “extended” to a compact space Ã

by considering every possible value in
Bkr and Bkp

Define

L̃v = max
a∈As

{
max

r̃∈Bk
r (s,a)

r̃ + max
p̃∈Bk

p (s,a,·)
{p̃Tv}

}
and T̃c = ΓcL̃v
⇒ use ScOpt for planning

No convergence for ScOpt in M̃k

Can we still use ScOpt?
We can alter M̃k ⇒ M̃†k

1. η-perturbation of the transition model
we enforce that the “attractive” state s is reached with
non-zero probability from any state-action pair

s
η

η
η

η

η

γ = 1− min
s,u∈S, a,b∈A
p̃, q̃∈B‡p

∑
j∈S

min {p̃(j|s, a), q̃(j|u, b)}


≤ 1− η < 1 =⇒ L̃† is γ-contractive

ScOpt in M̃†k converges to g∗c ≥ max
π∈Πc(M̃k)

gπ
M̃k
−ηc

There might not be any policy associated to g∗c

Augment the reward in M̃η
k ⇒ M̃

‡
k

2. Ak is expanded by duplicating every action
i.e., B‡r,k(s, a) = [0,max{Bkr (s, a)}]

◦ L̃ηv = L̃‡v and T̃ ηc v = T̃ ‡c v

g∗c (M̃η
k) = g∗c (M̃‡k)

◦ T̃c is globally feasible

∀v s.t. sp {v} ≤ c, ∃δ s.t. sp
{
L̃‡δv

}
≤ c

◦ M̃‡k is unichain

=⇒ g∗c 7−→ π̃k (a policy exists)

SCAL computes
max

π∈Πc(M̃‡
k

)

gπM

well defined problem and admits a maximizer π∗c (M̃‡k)
=⇒ efficiently computed using ScOpt

Regret

∆(SCAL, T ) = Õ
(
min{D, c}

√
ΓSAT

)

Numerical Experiments
Simple 2D domain
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I δ regulates the complexity

◦ g∗ = 2/3

◦ sp {h∗} = 1
1− δ

◦ D ≈ 1/δ

δ = 0.005 =⇒ communicating MDP
s0 s1 s2

a0
δ

1− δ

a0

a0
δ

1− δ

a1

r = 0

r ∼ Be
(

1
3

)

r ∼ Be
(

2
3

)

r ∼ Be
(

2
3

)

δ = 0.0 =⇒ s1 transient and D =∞

Way to Freedom
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S = 360, A = 8, D ≈ 250 (communicating) and sp {h∗} ≈ 3.2

Regret Results
UCRL [Jaksch et al. 2010] &

Õ(D
√

ΓSAT )Optimistic PSRL [Agrawal and Jia, 2017]

Regal.C [Bartlett and Tewari, 2009] Õ(C
√

ΓSAT ) with sp{h∗} ≤ C

Lower bound: Ω
(√
DSAT

)
or Ω

(√
sp{h∗}SAT

)
? [Jaksch et al. 2010]
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