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Context and Motivations

Why Options?

I Most real-world RL tasks involve solving many different subtasks
I As the size of the state-action space grows, it becomes difficult to

learn complex behaviours with “flat” RL methods
I Hierarchical RL approaches decompose large problems into smaller

ones by exploiting the structure of the problem
I Options are a possible implementation of temporally extended

actions (skills) for hierarchical RL

In this talk: on-line learning with options
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Example: Minecraft [?]
I Three subtasks

Navigate Pick-up Place

I One macro-task combining all three subtasks
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Context and Motivations

Example: Minecraft [?]
I Simulations
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Context and Motivations

Options Limitations

Four-rooms maze [?]
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Context and Motivations

Research questions

Empirical observations: introducing options in an MDP can speed up
learning [?] but can also be harmful [?].
 Is there a theoretical explanation for this?

Option Design: a challenging problem that has been always empirically
tackled:

I Leveraging on MDP properties (e.g., bottleneck discovery [?],
Laplacian analysis [?])

I Direct option optimization (e.g., Option-Critic [?])
I and many other concepts

 Can we exploit theoretical properties to design options?

Disclaimer:
this talk is not about option design

options are assumed to be given as input
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Context and Motivations

Problem addressed in this talk
I Introducing options enables to reduce the size of the state-action

space hence speed up learning
I Is there another advantage in using options?

Grid world

Replace all 4 cardinal actions by cardinal
options:

I Same number of states
I Same number of actions

Question: What is the impact of options in the above example? How is
exploration affected by options?
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Online RL

Markov Decision Processes

M = {S,A, p, r}

I S is the state space
I A = (As)s∈S is the set of actions
I when choosing action a in state s:

I random reward with mean r(s, a) ∈ [0, 1]
I transition to the next state (s, a)→ s′ according to transition

probability distribution p(·|s, a)

[?]
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Online RL

Average Reward MDP
Policies, gain and optimality

The average expected reward (or gain) of a policy π is

g(M, π) = lim
N→∞

1

N
E

[
N∑
t=1

r(st, at)|M, π

]

where at ∼ π(·|st).
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N→∞

1

N
E

[
N∑
t=1

r(st, at)|M, π

]

where at ∼ π(·|st).
Learner’s Goals:

1. Find the optimal policy π∗ = arg max
π

g(M, π)

Optimality Equation

g∗ = max
a

{
r(s, a) + pTu∗ − u∗(s)

}

2. Do this online! Don’t loose too much w.r.t. g∗ := g(M, π∗)
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Average Reward MDP
Policies, gain and optimality

The average expected reward (or gain) of a policy π is

g(M, π) = lim
N→∞

1

N
E

[
N∑
t=1

r(st, at)|M, π

]
where at ∼ π(·|st).
Learner’s Goals:

1. Find the optimal policy π∗ = arg max
π

g(M, π)

Optimality Equation

g∗ = max
a

{
r(s, a) + pTu∗ − u∗(s)

}
2. Do this online! Don’t loose too much w.r.t. g∗ := g(M, π∗)

 Regret minimization!

Frequentist Regret: optimism in face of uncertainty (OFU)

∆(M,A, T ) = Tg∗(M)−
T∑
t=1

rt
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Online Learning with Options

Temporal Abstraction
The Option Framework

Definition 1
A (Markov) Option o is a 3-tuple

{
so, βo, πo

}
where:

I so ∈ S is the states where the option can
be initiated,

I βo : S → [0, 1] is a Markov termination
condition,

I πo ∈ ΠSR
M is a stationary Markov policy.
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Online Learning with Options

Temporal Abstraction
Semi-Markov Decision Processes

SMDP [?]

A set of options O defined on an MDP M induces an SMDP M ′ :

M +O =⇒ M ′
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Online Learning with Options

Temporal Abstraction
Semi-Markov Decision Processes

SMDP [?]

A set of options O defined on an MDP M induces an SMDP M ′ :

M +O =⇒ M ′

A Semi-Markov Decision Process

M ′ = {S ′,A′, p, r, τ}

is an MDP with a random holding
time τ(s, a) associated with any
state-action pair.
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Online Learning with Options

Learning in SMDP
Tn: number of time steps
n: number of decision steps

s0

n = 0 T0 = 0
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Online Learning with Options

Learning in SMDP
Tn: number of time steps
n: number of decision steps

s0 s1
τ1, R1

n = 1 T1 ← T0 + τ1 R1 ←
τ1∑
t=1

rt
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Online Learning with Options

Learning in SMDP
Tn: number of time steps
n: number of decision steps

s0 s1
o′2

o′1

o′3

n = 2 T1 = τ1
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Online Learning with Options

Learning in SMDP
Tn: number of time steps
n: number of decision steps

s0 s1

s2

τ2, R2

n = 2 T2 ← T1 + τ2 R2 ←
τ2∑
t=1

rt

=⇒ Tn =
n∑
i=1

τi
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Online Learning with Options

Optimal Policy and Regret
Optimal policy

g∗O = max
π

gπO = max
π

lim
n→∞

Eπ
[∑n

t=1Rt
Tn

]

π∗ : S → O

Frequentist (SMDP) regret

∆(M,A, Tn) = Tng
∗
O −

n∑
i=1

Ri
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SUCRL

SMDP-UCRL
1. Construct set of plausible SMDPs Mk = Φ(Hk)

By exploiting confidence interval on
I Option transition probability: βpk(s, o)
I Option reward: βrk(s, o)
I Option duration: βτk (s, o)

2. Compute πk ∈ arg max
π∈ΠO,M∈Mk

gO(M,π)

I Use EVI to solve the optimality equation

g̃∗O = max
o∈Os

{
max

R∈R̃,τ∈τ̃

{
R(s, o)

τ(s, o)
+

1

τ(s, o)

(
max

p∈p̃(s,o)

{
pTu∗

}
− u∗(s)

)}}
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By exploiting confidence interval on
I Option transition probability: βpk(s, o)
I Option reward: βrk(s, o)
I Option duration: βτk (s, o) More complex than for MDPs!

Example

s0 s1

q

1− q

E[τ ] =
1

q

P (τ = k) = (1− q)k−1q

What about a confidence interval on τ?
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[?, Lemma 3]
If the set of options is proper, all holding times and rewards are
sub-Exponential. Moreover, they are sub-Gaussian if and only if they
are bounded.

This property comes from its inner Markov structure
(to be continued)
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SUCRL

Regret for MDPs
Theorem 2
In a finite MDP with diameter D, with probability at least 1− δ the
regret of UCRL after Tn time steps is bounded by

∆(M,A, Tn) = O

(
DS

√
ATn log

(
Tn
δ

))
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Regret for MDPs
Theorem 2
In a finite MDP with diameter D, with probability at least 1− δ the
regret of UCRL after Tn time steps is bounded by

∆(M,A, Tn) = O

(
D S

√
ATn log

(
Tn
δ

))

Diameter
The diameter of an MDP M is the maximal expected time it takes to
reach any state from any other state under an appropriate policy

D(M) := max
s,s′∈S,s6=s′

min
π

Eπ [T (s′)|s0 = s]

Mean first passage time

Def. Communicating MDP ⇔ Finite Diameter
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SUCRL

Regret analysis for SMDPs

[?, Theorem 1]
High-probability regret bound for SMDP-UCRL in M ′:

∆(M ′,A, Tn) = O

((
D′
√
S′ + C(M ′, n, δ)

)√
S′A′n log

(n
δ

))
where C(M ′, n, δ) is

C(M ′, n, δ) = τmax + Cτ

√
log
(n
δ

)
h.p. bound on
holding time
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Regret analysis for SMDPs

[?, Theorem 1]
High-probability regret bound for SMDP-UCRL in M ′:

∆(M ′,A, Tn) = O

((
D′
√
S′ + C(M ′, n, δ)

)√
S′A′n log

(n
δ

))
where C(M ′, n, δ) is

C(M ′, n, δ) = τmax + Cτ

√
log
(n
δ

)
h.p. bound on
holding time

Comparing regrets SMDP/MDP (ratio):

R ∼ D′

D

√
On

ATn
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SUCRL

Comments on SUCRL

I SUCRL requires prior knowledge about options (sub-Exponential
parameters)

I this requirement can be removed by better exploiting option
properties

 Parameter-free SUCRL

I Avoid considering options as atomic operations
I Take into account the inner option MDP structure
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Experiments

Experiments
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Experiments

Grid World
Domain presented in the introduction
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Experiments

Four Rooms 14x14
The classical domain for options

1e7
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Experiments

Four Rooms 14x14
The classical domain for options

1e7

Will options provide benefits even in a
smaller grid?
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Experiments

Four Rooms 6x6
The classical domain for options

1e5
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Experiments

Conclusions

I Temporal abstraction is powerful
I Faster learning
I Less regret

I But it does not come for free
I May increase the computational complexity
I Requires a far-sighted design of options
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Experiments

Thank you for your attention
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